skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Hong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Energetic particle deep penetration into low L‐shells (L < 4) impacts the dynamics of the radiation belts and ring current. Previous studies reported that electrons penetrate more frequently, deeply, and faster than protons of similar energies, but underlying mechanisms are unclear. In this study, we compare heavy‐ion behavior with electrons and protons to further identify the underlying mechanisms. Using Van Allen Probes data, we show that electron deep penetration occurs most frequently and deeply, followed by O+ions, then He+ions, and finally protons. Most particle deep penetrations occur within several hours. Superposed epoch analysis shows that prior to deep penetration, electrons have the steepest phase space density radial gradients, followed by heavy ions and then protons for the sameμandK. Our study suggests that a combination of two or more mechanisms, such as convection electric field and plasma wave‐induced scattering, may be needed to fully explain particle deep penetration. 
    more » « less
    Free, publicly-accessible full text available July 28, 2026
  2. Abstract The development of a deepening local minimum in phase space density (PSD)‐ profile indicates fast local loss potentially caused by wave‐induced scattering. The identification and characterization of proton PSD deepening minima are important for investigating the ring current loss and overall dynamics. Using multiyear Van Allen Probes observations, we analyze ∼10–100s keV proton PSD and report >100 keV proton deepening PSD minima for the first time. The overall occurrence rates of proton deepening local minimum peaks at ∼3%, mainly located at  = 4.5–5.0 near the plasmapause. The occurrence rate increases with the decrease of AL index and increase of solar wind dynamic pressure. The theoretical resonance energy of protons with typical He‐band electromagnetic ion cyclotron (EMIC) waves agrees with the energy of protons with deepening PSD minima. Thus, EMIC waves are the likely cause of the deepening PSD minimum and contribute to the fast local loss of ring current protons. 
    more » « less
    Free, publicly-accessible full text available February 28, 2026
  3. Abstract Electromagnetic ion cyclotron (EMIC) waves are commonly observed in the Earth's magnetosphere and play a significant role in regulating relativistic electron fluxes. The waveform of EMIC waves comprises amplitude‐modulated wave packets, known as “subpackets.” Despite their prevalence, the underlying physics and associated particle dynamics for subpacket formation remain poorly understood. In this study, using Van Allen Probe A observations, we present several rising‐tone EMIC wave events to reveal the downward frequency chirping between adjacent subpackets. By performing a hybrid simulation, we demonstrate for the first time that these wave properties are associated with the oscillation of proton holes in the wave gyrophase space induced by cyclotron resonance. The oscillation modulates the energy transfer between waves and particles, establishing a direct link between subpacket formation in cyclotron waves and nonlinear wave‐particle interactions. This new understanding advances our knowledge of subpacket formation in general and its broader implications in space plasma physics. 
    more » « less
    Free, publicly-accessible full text available June 16, 2026
  4. Abstract Drift periodic echoes of electrons in the inner belt appear as structured bands in energy spectrograms, also known as “zebra stripes”. Such phenomenon is normally observed at energies from 10s of keV to ∼250 keV. We report multiple series of zebra stripes of relativistic electrons observed by the recent Colorado Inner Radiation Belt Experiment (CIRBE) CubeSat. The high energy resolution measurements taken by the REPTile‐2 (Relativistic Electron and Proton Telescope integrated little experiment‐2) instrument onboard CIRBE show that zebra stripes of radiation belt electrons can be observed from 300 keV to >1 MeV, crossing theLrange from 1.18 to >3, from quiet times to storm times. Through test particle simulations, we show that a prompt electric field with a peak amplitude ∼5 mV/m in near‐Earth space can trigger zebra stripes of relativistic electrons. Azimuthal inhomogeneity of electron distribution caused by the prompt electric field modulates the electron energy spectrum by energy‐dependent drift phases to form zebra stripes. Though zebra stripes are observed in both belts, they tend to last longer and appear more frequently in the inner belt. Zebra stripes in the outer belt will have a shorter lifetime due to more perturbations there, including energy and pitch‐angle diffusion, which diminish the structure. This study demonstrates the important role of electric fields in the dynamics of relativistic electrons and contributes to the understanding of the mechanisms creating and diminishing zebra stripes. 
    more » « less
  5. Abstract During active geomagnetic periods both electrons and protons in the outer radiation belt have been frequently observed to penetrate to lowL(<4). Previous studies have demonstrated systematic differences in the deep penetration of the two species of particles, most notably that the penetration of protons is observed less frequently than for electrons of the same energies. A recent study by Mei et al. (2023,https://doi.org/10.1029/2022GL101921) showed that the time‐varying convection electric field contributes to the deeper penetration of low‐energy electrons and that a radial diffusion‐convection model can be used to reproduce the storm‐time penetration of lower‐energy electrons to lowerL. In this study, we analyze and provide physical explanations for the different behaviors of electrons and protons in terms of their penetration depth to lowL. A radial diffusion‐convection model is applied for the two species with coefficients that are adjusted according to the mass‐dependent relativistic effects on electron and proton drift velocity, and the different loss mechanisms included for each species. Electromagnetic ion cyclotron (EMIC) wave scattering losses for 100s of keV protons during a specific event are modeled and quantified; the results suggest that EMIC waves interacting with protons of lower energies than electrons can contribute to prevent the inward transport of the protons. 
    more » « less
  6. Abstract Chorus waves are intense electromagnetic emissions critical in modulating electron dynamics. In this study, we perform two‐dimensional particle‐in‐cell simulations to investigate self‐consistent wave‐particle interactions with oblique chorus waves. We first analyze the electron dynamics sampled from cyclotron and Landau resonances with waves, and then quantify the advection and diffusion coefficients through statistical studies. It is found that phase‐trapped cyclotron resonant electrons satisfy the second‐order resonance condition and gain energy from waves. While phase‐bunched cyclotron resonant electrons cannot remain in resonance for long periods. They transfer energy to waves and are scattered to smaller pitch angles. Landau resonant electrons are primarily energized by waves. For both types of resonances, advection coefficients are greater than diffusion coefficients when the wave amplitude is large. Our study highlights the important role of advection in electron dynamics modulation resulting from nonlinear wave‐particle interactions. 
    more » « less
  7. Abstract Ultra‐low frequency (ULF) waves radially diffuse hundreds‐keV to few‐MeV electrons in the magnetosphere, as the range of drift frequencies of such electrons overlaps with the wave frequencies, leading to resonant interactions. Theoretically this process is described by analytic expressions of the resonant interactions between electrons and ULF wave modes in a background magnetic field. However, most expressions of the radial diffusion rates are derived for equatorially mirroring electrons and are based on estimates of the power of ULF waves that are obtained either from spacecraft close to the equatorial plane or from the ground but mapped to the equatorial plane. Based on recent statistical in situ observations, it was found that the wave power of magnetic fluctuations is significantly enhanced away from the magnetic equator. In this study, the distribution of the wave amplitudes as a function of magnetic latitude is compared against models simulating the natural modes of oscillation of magnetospheric field lines, with which they are found to be consistent. Energetic electrons are subsequently traced in 3D model fields that include a latitudinal dependence that is similar to measurements and to the natural modes of oscillation. Particle tracing simulations show a significant dependence of the radial transport of relativistic electrons on pitch angle, with off‐equatorial electrons experiencing considerably higher radial transport, as they interact with ULF wave fluctuations of higher amplitude than equatorial electrons. These findings point to the need for incorporating pitch‐angle‐dependent radial diffusion coefficients in global radiation belt models. 
    more » « less
  8. Abstract Deep penetration of outer radiation belt electrons to lowL(<3.5) has long been recognized as an energy‐dependent phenomenon but with limited understanding. The Van Allen Probes measurements have clearly shown energy‐dependent electron penetration during geomagnetically active times, with lower energy electrons penetrating to lowerL. This study aims to improve our ability to model this phenomenon by quantitatively considering radial transport due to large‐scale azimuthal electric fields (E‐fields) as an energy‐dependent convection term added to a radial diffusion Fokker‐Planck equation. We use a modified Volland‐Stern model to represent the enhanced convection field at lowerLto match the observations of storm time values ofE‐field. We model 10–400 MeV/G electron phase space density with an energy‐dependent radial diffusion coefficient and this convection term and show that the model reproduces the observed deep penetrations well, suggesting that time‐variant azimuthalE‐fields contribute preferentially to the deep penetration of lower‐energy electrons. 
    more » « less
  9. Two differently substituted pyrazole ligands have been investigated with regard to the topology of their Pt complexes: upon deprotonation, two mononuclear 1:2 PtII-pyrazole complexes—one of the sterically unhindered 4-Me-pzH and one of the bulky 3,5-tBu-pzH (pzH = pyrazole)—yield the corresponding 1:2 PtII-pyrazolato species; the former a triangular, trinuclear metallacycle (1), and the latter a dinuclear, half-lantern species (2) formed via the unprecedented cyclometallation of a butyl group. Stoichiometric oxidation of the colorless PtII2 complex produces the deep-blue, metal–metal bonded PtIII2 analog (3) with a rarely encountered unsymmetrical coordination across the Pt-Pt bond. All three complexes have been characterized by single crystal X-ray structure determination, 1H-NMR, IR, and UV-vis-NIR spectroscopic methods. The XPS spectra of the PtII2 and PtIII2 species are also reported. Density functional theory calculations were carried out to investigate the electronic structure, spectroscopic properties, and chemical bonding of the new complexes. The calculated natural population analysis charges and Wiberg bonding indices indicate a weak σ-interaction in the case of 2 and a formal Pt-Pt single bond in 3. 
    more » « less